Defining star-free regular languages using diagrammatic logic

نویسنده

  • Aidan Delaney
چکیده

Spider diagrams are a recently developed visual logic that make statements about relationships between sets, their members and their cardinalities. By contrast, the study of regular languages is one of the oldest active branches of computer science research. The work in this thesis examines the previously unstudied relationship between spider diagrams and regular languages. In this thesis, the existing spider diagram logic and the underlying semantic theory is extended to allow direct comparison of spider diagrams and star-free regular languages. Thus it is established that each spider diagram defines a commutative star-free regular language. Moreover, we establish that every commutative star-free regular language is definable by a spider diagram. From the study of relationships between spider diagrams and commutative star-free regular languages, an extension of spider diagrams is provided. This logic, called spider diagrams of order, increases the expressiveness of spider diagrams such that the language of every spider diagram of order is star-free and regular, but not-necessarily commutative. Further results concerning the expressive power of spider diagrams of order are gained through the use of a normal form for the diagrams. Sound reasoning rules which take a spider diagram of order and produce a semantically equivalent diagram in the normal form are provided. A proof that spider diagrams of order define precisely the star-free regular languages is subsequently presented. Further insight into the structure and use of spider diagrams of order is demonstrated by restricting the syntax of the logic. Specifically, we remove spiders from spider diagrams of order. We compare the expressiveness of this restricted fragment of spider diagrams of order with the unrestricted logic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spider Diagrams of Order and a Hierarchy of Star-Free Regular Languages

The spider diagram logic forms a fragment of constraint diagram logic and is designed to be primarily used as a diagrammatic software specification tool. Our interest is in using the logical basis of spider diagrams and the existing known equivalences between certain logics, formal language theory classes and some automata to inform the development of diagrammatic logic. Such developments could...

متن کامل

Defining Regular Languages with Diagrams

Dr Gem Stapleton (Principal Investigator) is a Senior Research Fellow at the University of Brighton, located within the School of Computing, Mathematical and Information Sciences. Her PhD studies were also conducted at the University of Brighton (Sept 2001 – Aug 2004) and during 2005 she was employed as a Research Associate at the University of Kent in the Computer Laboratory. A major theme of ...

متن کامل

On the Descriptional Complexity of a Diagrammatic Notation

Spider diagrams are a widely studied, visual logic that are able to make statements about relationships between sets and their cardinalities. Various meta-level results for spider diagrams have been established, including their soundness, completeness and expressiveness. In order to further enhance our understanding of spider diagrams, we can compare them with other languages; in the case of th...

متن کامل

On the expressiveness of spider diagrams and commutative star-free regular languages

Spider diagrams provide a visual logic to express relations between sets and their elements, extending the expressiveness of Venn diagrams. Sound and complete inference systems for spider diagrams have been developed and it is known that they are equivalent in expressive power to monadic first-order logic with equality, MFOL[1⁄4]. languages that are finite unions of languages of the form K G , ...

متن کامل

Some Properties of Iterated Languages

A special kind of substitution on languages called iteration is presented and studied. These languages arise in the application of semantic automata to iterations of generalized quantifiers. We show that each of the star-free, regular, and deterministic context-free languages are closed under iteration and that it is decidable whether a given regular or determinstic context-free language is an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012